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Numerical investigation of two-dimensional projections of random fractal aggregates
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Three-dimensional random fractal aggregates of variable fractal dimension D ranging from 1 to
2.5 are built on a cubic lattice using a hierarchical computer algorithm. The fractal dimensions
of the surface D, and the perimeter D, of their two-dimensional projections have been computed.
From an extrapolation of finite size results for aggregates containing up to 8192 particles, it is found
that D, and D, are both equal to D for D < 2 while D, = 2 for D > 2. The numerical results are
consistent with a nontrivial value of D,, varying continuously with D, for D > 2.

PACS number(s): 61.43.Hv, 61.20.Ja, 61.16.—d
I. INTRODUCTION

The characterization of the morphology of finely di-
vided solids made of aggregated particles by means of
fractal geometry [1] led to a better understanding of the
aggregation mechanism by which they are formed [2,3]
and to their resulting physical and chemical properties
[3,4]. Therefore, the experimental determination of the
fractal dimension of mass fractal aggregates is of partic-
ular interest. Among the practical methods commonly
used, one can distinguish quantitative analysis of digital-
ized electron micrographs [5-7] and small angle scattering
neutron (x-ray or light) experiments [8-10]. Both meth-
ods encounter difficulties when they are applied to aggre-
gates of fractal dimension larger than two since in that
case the fractal dimension of their projection is bounded
by two and the scattering cross section becomes cut-
off dependent [11]. In this paper, we are concerned by
the former method and we address this problem numer-
ically by making use of a recently developed hierarchical
cluster-cluster aggregation model [12] which allows one
to build three-dimensional fractal aggregates on a cubic
lattice with a tunable fractal dimension varying contin-
uously from 1 to 2.5. We calculate some effective (size-
dependent) fractal dimensions for the surface, D,(V),
and the perimeter, D,(N), of the two-dimensional pro-
jection of such aggregates containing up to N = 8192 par-
ticles. These quantities exhibit strong size dependence
for fractal dimensions close to two. When trying to ex-
trapolate to the infinite size, they both converge to the
actual fractal dimension D for D < 2. But, while D,(N)
converges to the trivial value D, = 2, D,(N) converges
to a nontrivial, D-dependent value for D > 2.

II. THE VARIABLE-D CLUSTER-CLUSTER
HIERARCHICAL ALGORITHM

We recall here the main principles of a recent algo-
rithm which has been detailed elsewhere [12]. We use
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an iterative method which, starting from a collection of
2™ particles, builds, at iteration p, a collection of 2"~?
aggregates containing V = 2P particles each. The aggre-
gates are built on a cubic lattice with nearest neighbor
connection rules. An aggregate of the next generation,
containing N particles, is obtained by sticking two ag-
gregates of the previous generation, containing both %
particles, in a such a way that the distance I between
their center of mass should satisfy at best the condition

2= Icszg +1, (1)

where R%

two aggr;gates and k is related to the desired fractal
dimension D by

is the mean square radius of gyration of the

k2 =4(4% — 1) . (2)

The final configuration is chosen at random among all
the possibilities. Here we have considered version B of
the model (using the terminology of Ref. [12]) in which
some rotations of the clusters are allowed when trying to
satisfy relation (1). Following previous works [12,13] one
can calculate an effective, N-dependent fractal dimen-
sion, D(N), by comparing the results of a given iteration
with those of the previous one,

log4

D) = g ((RR) — ) — loa(%)

(3)

where the brackets (---) are averages over the collection
1

of aggregates at a given iteration and where the term 3
is introduced to eliminate “trivial” corrections to scaling
[13,14]. In Ref. [12] it has been shown that for all D
values smaller than D,,, = 2.5, and as soon as N is larger
than 16, D(N) becomes almost size independent and is
equal to D within less than 0.1%. In Fig. 1 we show
typical two-dimensional projections of aggregates built

with D = 1.5,2, and 2.5, containing 8192 particles.
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FIG. 1. Two-dimensional projections of typical aggregates
of 8192 particles built with the variable-D cluster-cluster hi-
erarchical procedure with D = 1.5, 2, 2.5. The scale has been
chosen such that the vertical size is the same in all pictures.

III. NUMERICAL CHARACTERIZATION OF
THE AGGREGATES PROJECTIONS

We have extended the above algorithm in order to
calculate the geometrical characteristics of the two-
dimensional projections of the aggregates. As soon as an
aggregate is built, a storage is made for its projections on
planes perpendicular to the z,y, and z directions of the
cubic lattice. In doing so, we implicitly assume that our
aggregates are purely isotropic so that these directions
are equivalent to any other directions of space. This as-
sumption, which is certainly wrong for deterministic ag-
gregates, may be reasonably trusted here since our dis-
ordered fractal aggregates have been built with isotropic
rules. A given projection is considered as a cluster on
a square lattice, the particle of which are projections of
one or more particles of the three-dimensional cluster.
For each projection, one calculates the number of surface
sites (occupied sites of the square lattice), N,, and the
number of perimeter sites, IV, as being unoccupied sites
nearest neighbors to occupied sites. Note that with such
a definition the internal perimeter of holes is taken into
account (it would have been difficult to exclude the holes
contribution without slowing down the calculation). The
quantities N, and IV, are averaged over the three projec-
tions for each aggregate, over all the aggregates of one
generation, and over several independent runs. Then, in
coherence with formula (3), we have calculated size de-
pendent fractal dimensions D,(N) and D,(N) by

log(N,(N)) — log(N,(¥))
log((RY) — §) — log(R)

log((Ry) — 3) —log(R%)

D,(N)=2 (4)

D,(N) =2

As in the expression of D(IN) we have kept the subtrac-
tion by } in the denominator, but here this trick has no
reason to eliminate the leading corrections to scaling. If
these quantities converge when N tends to infinity, their
limits D, and D,, are such that, in the asymptotic limit
of an extremely large aggregate of radius of gyration R,
one recovers the fractal scaling relations

N, ~ RP- | (6)
N, ~ RP» . (7
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In formulas (4) and (5) we have used the radius of gy-
ration of the three-dimensional aggregates. There is no
rigorous reason to do so and we might have used the ra-
dius of gyration of their projections instead. We have
checked that in the two cases the results are very close
and that, anyway, they lead to the same large-N extrap-
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FIG. 2. Numerical results for the effective fractal dimen-

sions D,(N) (a), Dy(N) (b), and their ratio %}'% (c) as a

function of D, for N = 16 (open squares), 128 (filled squares),
1024 (open circles), and 8192 (filled circles).
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olated values within the numerical uncertainties.

We have considered fractal dimensions varying from
1.3 to 2.0 by intervals of 0.1, and from 2.0 to 2.5 by
intervals of 0.05, up to size N = 8192, and 16 inde-
pendent runs have been performed in each cases. In
Figs. 2(a), 2(b), and 2(c), we give the numerical re-
sults for D,(N), D,(N), and for the ratio %’ respec-
tively, as a function of D, for some typical values of N
(N = 16,128,1024, and 8192). In contrast with D(N),
both D,(N) and D,(N) are size dependent. It appears
that finite size effects are stronger in the case of D,(N)
and for fractal dimensions close to two. It can also be no-
ticed that, in some range of parameters, it may happen
that D,(N) < 1 and that D,(N) > 2. This is not forbid-
den because these N-dependent quantities are not true
fractal dimensions (only their infinite-IV extrapolations
are).

IV. NUMERICAL EXTRAPOLATION
PROCEDURE

Since we have no help from a theory, we will assume
that, as N — oo, both D,(N) and D,(N) can be ex-
pressed as expansions of some unknown powers of 3.
For example, in the case of D,(NN), such an expansion
might be written as

D,(N) =D, +»_ A,()) N~ (8)
i=1
where D, is the true fractal dimension for the surface of

the projection. In practice, we have truncated the sum
to its first term, and we have tried to fit the data with

D,(N)=D, + AN~ (9)

where D,, A,, and a, have been calculated to give the
best fits (lowest standard deviation) for each D value. To
avoid the strong systematic errors on very small sizes, we
have not included the data for N = 2,4, and 8 in the fits.
This is more or less justified by the fact that D(N) is
found to be very close to the true fractal dimension as
soon as N is greater or equal to 16. Therefore, it remains
only ten points for each fit and it is clear, in view of
the numerical uncertainties, that it is impossible to try
to determine two terms of the sum (i.e., five unknown
parameters). Some typical fits are shown in Fig. 3(a),
where D,(N) has been plotted as a function of (£§)~=
(with the best a, in each case) for D values smaller than
2.3. The procedure failed for D > 2.3 because D,(N)
exhibits a nonmonotonic behavior. In the cases D = 2.3
and 2.5 we have arbitrarily taken a, = 0.4 to present the
data for D, in Fig. 3(a).

The same procedure has been used for D,(N) and for
the ratio % for which the following fits have been
used:

D,(N) =D, + AN~ , (10)

D,(N) D, _
= — + A, , N %7 |
Dp(N) Dy i

(11)
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FIG. 3. Linear fits of D,(N) versus (iNE)_a' (a), Dp(N)
versus (&)~ (b), and % versus (f£)~%*#(c) for some D
values. Filled symbols, circles, squares, diamonds and trian-
gles, correspond to D < 2 values, D = 1.3, 1.5, 1.7, and 1.9,
respectively. Open symbols circles, squares and triangles, cor-
respond to D > 2 values, D = 2.1, 2.3, and 2.5, respectively.
In each cases, the exponents a,, o, and a,p have been chosen
to give the best fit except in a) for D = 2.3 and D = 2.5 where
a, = 0.4. The infinite-N extrapolated values are represented
by the corresponding symbols on the vertical axis.
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In these two cases the procedure works for all D values.
The results obtained for a,, ap, a,, and the extrapolated
estimates of D,, Dp, and %: are reported in Fig. 4.

The numerical errors on the parameters of the fits can
be estimated as in standard regression methods. The
errors on the exponents a,, a,, a,, are quite large, of
order 0.1, and are larger when D is close to 2, but it
should be remembered that the presence of other terms
in the large N expansion (which are not taken into ac-
count in our fits) should produce some other (systematic)
errors. Our numerical results suggest that there might be
an unique D-dependent a exponent in the leading cor-
rection to scaling for both D,(N) and D,(N).

In the case of D,, the extrapolated values are almost
equal, within the error bars, to the “trivial” result:

D,=D for D<2, D,=2 for D>2. (12)
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FIG. 4. The exponents a,, ap and a,p (a) and the extrap-
olated values D,, D, and %;- (b) as a function of D, obtained
from the fits of the finite size results. Filled circles, open
circles, filled squares correspond to D,, D, and g;-, respec-
tively. In case (b), the solid lines correspond to the trivial
results D, = D, = D for D < 2 and D, = 2 for D > 2, while
the dotted lines correspond to formulae (13) and (14).
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This result is consistent with the scaling N, ~ N2/D for
D > 2, which can be checked directly on our numeri-
cal results and which was already found by Meakin et al.
[15] when analyzing the cross section of some restructured
cluster-cluster aggregates scattered by ballistic point par-
ticles. Even if we cannot obtain linear fits for D > 2.25,
the numerical results of D,(IN) are consistent with an
infinite-V limit of 2.

In the case of D,, even if finite size effects are more
important, the extrapolated results are consistent with
the trivial result D, = D for all D smaller than 2. This
means that for D < 2 even if there are few overlaps
producing some loops, or some blobs, these overlaps are
not relevant, and both the perimeter and the surface of
the two-dimensional projection scale as the total mass
of the three-dimensional aggregate as soon as it can be
considered sufficiently large.

The new result of this work concerns D, for D > 2.
Here we find a nontrivial extrapolated value clearly dif-
ferent from both one and two and varying continuously
with D. The dotted lines shown in Fig. 4(b) correspond
to the following analytical expressions:

D,=1+(3-D)? (13)

D, 2

D= 156D (14)
The validity of such a formula should not be taken too
seriously. It should be considered as an example of an
approximate expression for D, satisfying the boundary
conditions D, = 2 for D =2 and D, =1 for D =3
and going through our numerical results within the error
bars.

V. CONCLUSION

The most important conclusion of this paper concerns
the fractal dimension of the perimeter of the projection
of a three-dimensional fractal aggregate. We have found
that, in the asymptotic limit of very large aggregates,
this quantity is well defined and varies continuously with
the mass fractal dimension of the three-dimensional ag-
gregate and we have been able to propose some approxi-
mate formula to account for this variation. It is therefore
tempting to conclude that one might generally be able to
extract the fractal dimension of a three-dimensional frac-
tal aggregate by quantitatively analyzing the perimeter
of its two-dimensional projection, even when the fractal
dimension is larger than two. But before giving such
a hopeful conclusion, one should investigate the degree
of universality of such a result. It has been here estab-
lished for a given class of “mass fractal” aggregates grown
through a particular cluster-cluster algorithm. Accord-
ing to Ref. [12], we have strong reasons to think that our
model covers a large class of experimental objects, but
one should pursue and check if our results are also valid
for particle-cluster aggregates (we recall that the fractal
dimension of the three-dimensional Witten-Sander aggre-
gate is equal to 2.5 [16], and therefore larger than 2). We
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also intend to apply our results to an image analysis of
two-dimensional photographs of carbon black aggregates.
The mass fractal dimension will be estimated from the
size dependence of an effective fractal dimension for the
perimeter. We will also extend our numerical investiga-
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tions to three-dimensional “surface fractals,” i.e., com-
pact objects bounded by a (generally self-affine) fractal
surface. Here again we will try to extract their fractal
properties from a quantitative analysis of their projec-
tion’s perimeters.

(1] B. B. Mandelbrot, The Fractal Geometry of Nature (W.
H. Freeman and Co., San Francisco, 1982).

[2] R. Jullien and R. Botet, Aggregation and Fractal Aggre-
gates (World Scientific, Singapore, 1987).

[3] P. Meakin, Adv. Colloid Int. Sci. 28, 249 (1988).

[4] D. Avnir, The Fractal Approach to Heterogeneous Chem-
istry (Wiley, Chichester, 1989).

[5] S. Forrest and T. Witten, J. Phys. A 12, L109 (1979).

[6] M. Tencé, J. P. Chevalier, and R. Jullien, J. Phys.
(France) 47, 1989 (1986).

[7] F. Ehrburger-Dolle and M. Tencé, Carbon 28, 448
(1990).

[8] D. Schaefer, J. Martin, P. Wiltzius, and D. Cannell, Phys.

Rev. Lett. 52, 2371 (1984).

[9] T. Freltoft, J. K. Kjems, and S. K. Sinha, Phys. Rev. B
33, 269 (1986).

[10] R. Vacher, T. Woignier, J. Pelous, and E. Courtens,
Phys. Rev. B 37, 6500 (1988).

[11] M. V. Berry, J. Phys. A 12, 781 (1979).

[12] R. Thouy and R. Jullien, J. Phys. A 9, 2953 (1994).

[13] R. Ball and R. Jullien, J. Phys. Lett. (France) 45, L1031
(1984).

[14] P. B. Warren, J. Phys. I (France) 3, 1509 (1993).

[15] P. Meakin, B. Donn, and G. W. Mulholland, Langmuir
5, 510 (1989).

[16] P. Meakin, Phys. Rev. A 33, 3371 (1986).



